In the literature of social network, Euclidean distance (Burt, 1976) or correlations (Wasserman and Faust, 1994) were considered as measures of structural equivalence.
Usage
dist_sim_matrix(
A,
method = c("euclidean", "hamming", "jaccard"),
bipartite = FALSE
)
References
Burt, Ronald S. (1976) Positions in networks. Social Forces, 55(1): 93-122.
Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Examples
A <- matrix(c(
0, 1, 0, 0, 1,
0, 0, 0, 1, 1,
0, 1, 0, 0, 1,
0, 0, 1, 1, 0,
0, 1, 0, 0, 0
), nrow = 5, ncol = 5, byrow = TRUE)
rownames(A) <- letters[1:nrow(A)]
colnames(A) <- rownames(A)
dist_sim_matrix(A, method = "jaccard")
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.0000000 0.6666667 0.0000000 1.0000000 0.5
#> [2,] 0.6666667 0.0000000 0.6666667 0.6666667 1.0
#> [3,] 0.0000000 0.6666667 0.0000000 1.0000000 0.5
#> [4,] 1.0000000 0.6666667 1.0000000 0.0000000 1.0
#> [5,] 0.5000000 1.0000000 0.5000000 1.0000000 0.0
A <- matrix(c(
0, 0, 3, 0, 5,
0, 0, 2, 0, 4,
5, 4, 0, 4, 0,
0, 3, 0, 1, 0,
0, 0, 0, 0, 2
), nrow = 5, ncol = 5, byrow = TRUE)
dist_sim_matrix(A, method = "euclidean")
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.000000 1.414214 9.539392 6.633250 4.242641
#> [2,] 1.414214 0.000000 8.774964 5.477226 2.828427
#> [3,] 9.539392 8.774964 0.000000 5.916080 7.810250
#> [4,] 6.633250 5.477226 5.916080 0.000000 3.741657
#> [5,] 4.242641 2.828427 7.810250 3.741657 0.000000