Skip to contents

Generalized degree centrality for one-mode and bipartite networks

Usage

gen_degree(
  A,
  weighted = FALSE,
  type = "out",
  normalized = FALSE,
  loops = TRUE,
  digraph = TRUE,
  alpha = 0.5,
  bipartite = FALSE
)

Arguments

A

A matrix object

weighted

Whether the matrix is weighted or not

type

Character string, “out” (outdegree), “in” (indegree) and “all” (degree)

normalized

Whether normalize the measure for the one-mode network (Freeman, 1978) or a bipartite network (Borgatti and Everett, 1997)

loops

Whether the diagonal of the matrix is considered or not

digraph

Whether the matrix is directed or undirected

alpha

Sets the alpha parameter in the generalised measures from Opsahl et al. (2010)

bipartite

Whether the matrix is bipartite or not.

Value

This function returns term 1, 2 and 3, the normalization and the maximum value of the specification of Everett and Borgatti (2020), and the constraint of Burt (1992)

References

Borgatti, S. P., and Everett, M. G. (1997). Network analysis of 2-mode data. Social Networks, 19(3), 243–269.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

Opsahl, T., Agneessens, F., and Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

Author

Alejandro Espinosa-Rada

Examples


A3 <- matrix(c(
  0, 4, 4, 0, 0, 0,
  4, 0, 2, 1, 1, 0,
  4, 2, 0, 0, 0, 0,
  0, 1, 0, 0, 0, 0,
  0, 1, 0, 0, 0, 7,
  0, 0, 0, 0, 7, 0
), byrow = TRUE, ncol = 6)

gen_degree(A3, digraph = FALSE, weighted = TRUE)
#> [1] 4.000000 5.656854 3.464102 1.000000 4.000000 2.645751