Meta matrix for multilevel networks
Arguments
- A1
The square matrix of the lowest level
- B1
The incidence matrix of the ties between the nodes of first level and the nodes of the second level
- A2
The square matrix of the second level
- B2
The incidence matrix of the ties between the nodes of the second level and the nodes of the third level
- A3
The square matrix of the third level
- B3
The incidence matrix of the ties between the nodes of the third level and the nodes of the first level
References
Carley, K. M. (2002). Smart agents and organizations of the future. In: Leah Lievrouw & Sonia Livingstone (Eds.), The Handbook of New Media (pp. 206-220). Thousand Oaks, CA, Sage.
Krackhardt, D., & Carley, K. M. (1998). PCANS model of structure in organizations (pp. 113- 119). Pittsburgh, Pa, USA: Carnegie Mellon University, Institute for Complex Engineered Systems.
Examples
A1 <- matrix(c(
0, 1, 0, 0, 0,
1, 0, 0, 1, 0,
0, 0, 0, 1, 0,
0, 1, 1, 0, 1,
0, 0, 0, 1, 0
), byrow = TRUE, ncol = 5)
B1 <- matrix(c(
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 1
), byrow = TRUE, ncol = 3)
A2 <- matrix(c(
0, 1, 1,
1, 0, 0,
1, 0, 0
), byrow = TRUE, nrow = 3)
B2 <- matrix(c(
1, 1, 0, 0,
0, 0, 1, 0,
0, 0, 1, 1
), byrow = TRUE, ncol = 4)
A3 <- matrix(c(
0, 1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0
), byrow = TRUE, ncol = 4)
B3 <- matrix(c(
1, 0, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0
), byrow = TRUE, ncol = 5)
rownames(A1) <- letters[1:nrow(A1)]
colnames(A1) <- rownames(A1)
rownames(A2) <- letters[nrow(A1) + 1:nrow(A2)]
colnames(A2) <- rownames(A2)
rownames(B1) <- rownames(A1)
colnames(B1) <- colnames(A2)
rownames(A3) <- letters[nrow(A1) + nrow(A2) + 1:nrow(A3)]
colnames(A3) <- rownames(A3)
rownames(B2) <- rownames(A2)
colnames(B2) <- colnames(A3)
rownames(B3) <- rownames(A3)
colnames(B3) <- rownames(A1)
meta_matrix(A1, B1, A2, B2, A3, B3)
#> a b c d e f g h i j k l
#> a 0 1 0 0 0 1 0 0 1 0 0 0
#> b 1 0 0 1 0 1 1 0 0 1 0 0
#> c 0 0 0 1 0 0 1 0 0 0 0 0
#> d 0 1 1 0 1 0 1 0 0 1 0 0
#> e 0 0 0 1 0 0 1 1 0 0 0 0
#> f 1 1 0 0 0 0 1 1 0 0 0 0
#> g 0 1 1 1 1 1 0 0 0 0 0 0
#> h 0 0 0 0 1 1 0 0 0 0 0 0
#> i 0 0 0 0 0 0 0 0 0 1 1 1
#> j 0 0 0 0 0 0 0 0 1 0 0 0
#> k 0 0 0 0 0 0 0 0 1 0 0 1
#> l 0 0 0 0 0 0 0 0 1 0 1 0