Skip to contents

This function calculate some spatial autocorrelations for a sample of networks at different orders (distances).

Usage

spatial_cor(
  A,
  V,
  measures = c("covariance", "correlation", "moran", "geary"),
  mean = TRUE,
  diag = FALSE,
  distance1 = TRUE,
  rowstand = FALSE,
  scale = FALSE
)

Arguments

A

A symmetric matrix

V

A vector

measures

Whether to use the Covariance covariance (default), Correlation correlation, Moran I moran or Geary's C geary

mean

Whether to use the mean of the vector for the measures

diag

Whether to consider the diagonal of the matrix for the measures

distance1

Whether to return only the spatial autocorrelation considering the actor at distance 1

rowstand

Whether to use the row-standardization to estimate Moran I (Anselin, 1995)

scale

Whether to scale Moran I (Anselin, 1995)

Value

This function return the global spatial autocorrelation. Multiple orders can also be computed.

References

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.

Geary, R.C. (1954). “The Contiguity Ratio and Statistical Mapping.” The Incorporated Statistician, 5: 115-145.

Moran, P.A.P. (1950). “Notes on Continuous Stochastic Phenomena.” Biometrika, 37: 17-23.

Examples

A <- matrix(c(
  0, 0, 1, 1,
  0, 0, 1, 0,
  1, 0, 0, 0,
  1, 0, 1, 0
), byrow = TRUE, ncol = 4)
V <- c(2, 2, 1, 1)

spatial_cor(A, V, measures = c("moran"))
#> [1] -0.6666667