This function calculate some spatial autocorrelations for a sample of networks at different orders (distances).
Usage
spatial_cor(
A,
V,
measures = c("covariance", "correlation", "moran", "geary"),
mean = TRUE,
diag = FALSE,
distance1 = TRUE,
rowstand = FALSE,
scale = FALSE
)
Arguments
- A
A symmetric matrix
- V
A vector
- measures
Whether to use the Covariance
covariance
(default), Correlationcorrelation
, Moran Imoran
or Geary's Cgeary
- mean
Whether to use the mean of the vector for the measures
- diag
Whether to consider the diagonal of the matrix for the measures
- distance1
Whether to return only the spatial autocorrelation considering the actor at distance 1
- rowstand
Whether to use the row-standardization to estimate Moran I (Anselin, 1995)
- scale
Whether to scale Moran I (Anselin, 1995)
Value
This function return the global spatial autocorrelation. Multiple orders can also be computed.
References
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.
Geary, R.C. (1954). “The Contiguity Ratio and Statistical Mapping.” The Incorporated Statistician, 5: 115-145.
Moran, P.A.P. (1950). “Notes on Continuous Stochastic Phenomena.” Biometrika, 37: 17-23.